Practice Problem Set 5A
 Fourier Series Approx of Periodic Forcing Function

Do the following problems from the book:
5.6: Find the Fourier series expansion of the function shown below:

5.13: Find the Fourier series expansion of the function shown below:

SCROLL

DOWN

FOR

SOLUTION

(But don't get tempted by the dark side. Resist! Use the, um, Force?)

ARE

 YOU

 YOU

 SURE?

 SURE?}
(Go back up and think harder? Also, what exactly are you looking for in the solution below?)

SOLUTION

5.6: Find the Fourier series expansion of the function shown below:

(6)

$$
\begin{aligned}
& F(t)= \begin{cases}\frac{F_{0}}{\pi} t & 0 \leq t \leq \pi \\
-\frac{F_{0}}{\pi} t & -\pi \leq t \leq 0\end{cases} \\
& T_{f}=2 \pi, \quad \omega_{f}=\frac{2 \pi}{T_{f}}=1 \\
& F(t)=F(-t) \\
& \Rightarrow F(t) \text { is an even function } \\
& b_{n}=0 \\
& F(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \omega_{f} t \\
& a_{0}=\frac{2}{T_{f}} \int_{-\frac{T_{f}}{2}}^{\frac{T_{f}}{2}} F(t) d t \\
& =\frac{1}{\pi}\left(\int_{-\pi}^{0} \frac{\left(-F_{0}\right)}{\pi} t d t\right. \\
& \quad+\int_{0}^{\pi} \frac{F_{0}}{\pi} t d t \\
& =F_{0}
\end{aligned}
$$

5.13: Find the Fourier series expansion of the function shown below:

